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Preliminaries	
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Moving from Postprocessing 
to Run-Time Scientific Data 

Analysis in HPC ���
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Analyze!

Postprocessing particle 
tracing and visualization	


Run-time particle tracing and 
postprocessing  visualization 	




Example of a data flow network 

Definition of Data Analysis	

•  Any data transformation, or a network or transformations.	

•  Anything done to original data beyond its original generation.	

•  Can be visual, analytical, statistical, or data management.	
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Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics 

Morse-Smale complex of combustion Voronoi tessellation of cosmology 

Examples of Data Analysis	


… and infinitely many more 
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Scientific Data Analysis Today	


•  Big science = big data, and	

•  Big data analysis => big science resources	


•  Data analysis is data intensive.	


•  Data intensity = data movement.	


•  Parallel  =  data parallel (for us)	


•  Big data => data decomposition	

•  Task parallelism, thread parallelism, while important, are 

not part of this work	

•  Most analysis algorithms are not up to the challenge	


•  Either serial, or 	


•  Communication and I/O are scalability killers	
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You Have Two Choices to Parallelize Data Analysis	
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or	
By hand	
 With tools	


void ParallelAlgorithm() {	

   …	

   MPI_Send();	

   …	

   MPI_Recv();	

   …	

   MPI_Barrier();	

   …	

   MPI_File_write();	

}	


void ParallelAlgorithm() {	

   …	

   LocalAlgorithm();	

   …	

   DIY_Merge_blocks();	

   …	

   DIY_File_write()	

}	




Executive Summary���

DIY helps the user write data-parallel analysis algorithms. ���
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Main ideas and Objectives 	

-Large-scale parallel analysis for HPC	


-Scientists, visualization researchers, 
tool builders	

-In situ, coprocessing, postprocessing	

-Data-parallel problem decomposition	


-Scalable data movement algorithms	


Benefits	

-Researchers can focus on their own 

work, not on parallel infrastructure	

-Analysis applications can be custom	


-Reuse core components and algorithms 
for performance and productivity	




Thirteen things you need for parallel 
data analysis	
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#1: Separate Analysis Ops from Data Ops	


You do this yourself	


Can use serial libraries such as OSUFlow, Qhull, VTK 
(don’t have to start from scratch) 

DIY handles this 

Analysis Application Application 
Data Model 

Analysis 
Data Model 

Analysis 
Algorithm 

Particle 
Tracing 

CFD Unstructured 
Mesh 

Particles Numerical 
Integration 

Information 
Entropy 

Astrophysics AMR Histograms Convolution 

Morse-Smale 
Complex 

Combustion Structured 
Grid 

Complexes Graph 
Simplification 

Computational 
Geometry 

Cosmology Particles Tessellations Voronoi 

Communica
tion 

Additional 

Nearest 
neighbor 

File I/O, 
Domain 
decompositi
on, process 
assignment, 
utilities 

Global 
reduction, 
nearest 
neighbor 

Global 
reduction 

Nearest 
neighbor 
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#2: Group Data Items Into Blocks	
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The block is DIY’s basic unit of data decomposition. Original dataset is 
decomposed into generic subsets called blocks, and associated analysis items live 
in the same blocks. Blocks don’t have to be “blocky.”  Any subdivision of data (eg., 
a set of graph nodes, a group of particles, etc.) is a block in DIY.	


!"#$%"$#&'()#*' +,-()#*' ./0"#$%"$#&'(,&01



#3: Support Multiple Domains	
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Uses:	


1.  Organize input 
(upper right)	


2.  Second 
decomposition 
suited for 
particular analysis 
(lower right)	


3.  Comparing 
multiple unrelated 
data domains (not 
shown)	




#4: Distinguish Between Blocks and Processes	
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All data movement operations are per block; blocks exchange information with 
each other using DIY’s communication algorithms. DIY manages and optimizes 
exchange between processes based on the process assignment. This allows for 
flexible process assignment as well as easy debugging.	
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#5: Handle Time	
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-Time often goes forward only	

-Usually do not need all time steps at once	


Hybrid 3D/4D time-space decomposition. Time-space is represented by 4D blocks that 
can also be decomposed such that time blocking is handled separately. 	
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#6: Group Blocks into Neighborhoods	
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-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and 
knowledge of other blocks (not master-
slave global knowledge)	
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#7 Make Communication Fun	
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Many different analysis operations share a small 
set of communication patterns. These 
communication kernels together with supporting 
utilities for decomposition and I/O can be 
encapsulated, optimized, and reused. DIY provides 
3 efficient scalable communication algorithms on 
top of MPI. May be used in any combination.	


Analysis Communication 

Sort-Last Rendering Swap-Based Reduction 

Morse-Smale Complex Merge-Based Reduction 

Information Entropy Merge-Based Reduction 

Particle Tracing Neighborhood Exchange 

Voronoi Tessellation Neighborhood Exchange 

Graph layout Send-Receive 

Semi	

Regular	


Regular	
 Heterogeneous	

Data	


Homogeneous	

Data	


Irregular	


Factors for selecting 
communication 
algorithm:	

-associativity	

-number of iterations	

-data size vs. memory 
size	

-homogeneity of data	




3 Communication Patterns	
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Nearest neighbor	
 Swap-based 
reduction	


Merge-based 
reduction	




Communication Performance Benchmarks	


18	


Communication time only for our merge algorithm compared with MPI's reduction algorithm 
(left) and our swap algorithm compared with MPI's reduce-scatter algorithm (right).	




Different Neighborhood Communication Patterns	
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DIY provides point to point and different varieties of collectives within a neighborhood via 
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	


How to enqueue items 
for neighbor exchange	


•  DIY offers several 
options	


•  Send to a particular 
neighbor or neighbors, 
send to all nearby 
neighbors, send to all 
neighbors	


•  Support for periodic 
boundary conditions 
involves tagging which 
neighbors are periodic 
and calling user-defined 
transform on objects 
being sent to them	
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Adjustable Synchronization Communication Algorithm	


  for (blocks in my neighborhood) {	


  	
pack and send messages of block IDs and   
	
particle counts	


 	
pack and send messages of particles	


  }	

  wait for enough IDs and counts to arrive	


  for (IDs and counts that arrived) {	


  	
receive particles	


  }	


Wait factor: the 
fraction of items for 
which to wait is 
adjustable. Typically 
we use 0.1 (wait for 
10% of pending 
items to arrive in 
each round).	




Stress Test: Number of Items Exchanged	
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Particle tracing usually exchanges few particles between blocks; eg., previous results 
were between 8 and 256 particles per block. We also benchmarked our neighbor 
exchange algorithm for much greater number of items exchanged.	


# Items Bytes/
Item 

Total 
Bytes 

# Procs Exchange 
Time (s) 

64 20 1 K 32 0.018 

128 0.028 

512 0.028 

256 20 5 K 32 0.064 

128 0.097 

512 0.098 

1 K 20 20 K 32 0.235 

128 0.354 

512 0.357 

Conclusion: Exchanging up to a few thousand small items performs well. Beyond that 
number, the user should aggregate small items into a larger item prior to exchanging.	


# Items Bytes/
Item 

Total 
Bytes 

# Procs Exchange 
Time (s) 

4 K 20 80 K 512 1.358 

16 K 320 K 512 5.507 

64 K 1 M 512 22.083 

256 K 20 5 M 512 90.238 

1 M 20 M 512 351.068 

# Items Bytes/
Item 

Total 
Bytes 

# Procs Exchange 
Time (s) 

1 20 M 20 M 512 0.223 

Platform: IBM Blue Gene/Q	


Small item counts at various process counts	
 Large item counts at 512 processes	


One aggregated item at 512 processes	




#8: Define Custom Data Models	
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HACC (cosmology) 
Data Model	


int num_particles;	

float *xx, *yy, *zz;	

float *vx, *vy, *vz;	

float *phi;	

int64_t pid;	

uint16_t mask;	


Corollary: analysis X data 
model ≠ analysis Y data 
model  	


Tess (voronoi tessellation) Data Model	

float mins[3]; 	

float maxs[3]; 	

int num_verts; 	

int num_cells; 	

double *verts; 	

int *num_cell_verts; 	

int tot_num_cell_verts;	

int *cells	

double *sites; 	

int num_complete_cells; 	

int *complete_cells; 	

double *areas; 	

double *vols; 	

int tot_num_cell_faces;	

int *num_cell_faces; 	

int *num_face_verts;	

int tot_num_face_verts;	

int *face_verts;	




Compact DIY Datatypes	
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-Any C/C++/Fortran data structure can be represented as an DIY (MPI) data type	

-DIY uses data type to fetch data directly from memory or storage	

-User does not pack / unpack (serialize / deserialize) data	

-Zero copy at application level saves time and space	

-DIY helps make data type creation easier	


float mins[3]; 	


float maxs[3];  	

double *verts; 	


double *sites; 	


int *complete_cells; 	

double *areas; 	


double *vols; 	

int *num_cell_faces; 	


int *num_face_verts;	


int *face_verts;	


DIY_Datatype type;	


struct map_block_t map[] = {	

  { DIY_FLOAT,    OFST,  3,  offsetof(struct vblock_t, mins)                                  },	


  { DIY_DOUBLE, ADDR, v->num_verts * 3, DIY_Addr(v->verts)                         },	


  { DIY_DOUBLE, ADDR, v->num_cells * 3, DIY_Addr(v->sites)                           },	

  { DIY_INT,         ADDR, v->num_complete_cells, DIY_Addr(v->complete_cells) },	


  { DIY_DOUBLE, ADDR, v->num_complete_cells, DIY_Addr(v->areas)               },	

  { DIY_DOUBLE, ADDR, v->num_complete_cells, DIY_Addr(v->vols)                 },	


  { DIY_INT,         ADDR, v->num_complete_cells, DIY_Addr(v->num_cell_faces) },	


  { DIY_INT,         ADDR, v->tot_num_cell_faces, DIY_Addr(v->num_face_verts) },	

  { DIY_INT,         ADDR, v->tot_num_face_verts, DIY_Addr(v->face_verts)        },	


  { DIY_FLOAT,    OFST,  3, offsetof(struct vblock_t, maxs)                                  },	

};	


DIY_Create_struct_datatype(DIY_Addr(vblock), 10, map, dtype);	


C data structure	
 DIY data type	




#9 Output and Input Results	
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Features	


Binary	

General header/data blocks	

Footer with indices	

Application assigns semantic value to DIY blocks	

Written efficiently in parallel	

Parallel block-wise compression	


Output file format	
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Data Input	
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Multiblock and Multifile I/O	


-Application-level two-phase I/O	

-Reads raw, netCDF, HDF5 (future)	

-Read requests sorted and aggregated  into large contiguous accesses	

-Data redistributed to processes after reading	

-Single and multi block/file domains	

-75% of IOR benchmark on actual scientific data	


Input algorithm	


Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11 



#10: Play Nicely with Others	
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DIY by design doesn’t include input or output data models. Rather than re-
inventing them, it can import and export those models.	


Import: Replicate model using DIY_Decomposed(), explicitly providing blocks and 
neighbors to DIY	

Export: Just use the other model API. DIY does not prevent you from making 
other library calls.	




Support Applications ���

In Situ Unstructured Spectral Meshes With Help from MOAB	
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-Decomposition assigned by the application, not DIY	

-DIY needs to get the decomposition from the app	

-Call on MOAB for help with connectivity	


Given the above mesh, assume the 
green block wants ghost cells in a given 
ghost radius of size t.	


Result: the green block will have 
these cells (original green cells plus 
transparent cells)	


!



MOAB Example	
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void foo(imesh *mesh) {   // MOAB mesh	

  DIY_Init(num_blocks);	

  for (num_blocks) { 	

    // query MOAB for verts in block	

    get_adjacencies(hex, adj_verts);	

    BlockBounds(bounds); // find min/max of verts 	

    // query MOAB for local neighbors of vertices	

    get_adjacencies(adj_verts, adj_hexes); 	

    store adj_hexes in neighbors, num_neighbors	

    // query MOAB for remote neighbors 	

    get_sharing_data(adj_verts, remote_handles,          	


        remote_procs); 	

    remote_data = remote_handles, remote_procs; 	

    // query MOAB for local vertex ids	

    loc_vids[block] =	

         id_from handle(shared_adj_verts); 	

  }	

  DIY_Decomposed(blocks, bounds, remote_data,  	

      num_remote_data, loc_vids, neighbors,	

      num_neighbors);	

}	


while (!done) {	

   for (cells) {	

      for (neighbors) {	

         if (cell intersects neighbor extents + t &&	

              cell was not sent already &&	

              cell did not come from neighbor)	

                 post cell to neighbor;	

      }	

   }	

   num_recvd = DIY_Exchange_neighbors();	

   done = DIY_Check_done_all(!num_recvd); 	


}	


!



#11: Be Lightweight���

A library with a small l	
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Library	


Written in C++ with C bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	
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#12: Come with Instructions	
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Tutorial Examples	

•  Block I/O: Reading data, writing analysis 

results	

•  Static: Merge-based, Swap-based reduction, 

Neighborhood exchange	


•  Time-varying: Neighborhood exchange	

•  Spare thread: Simulation and analysis 

overlap	

•  MOAB: Unstructured mesh data model	

•  VTK: Integrating DIY communication with 

VTK filters	

•  R: Integrating DIY communication with R 

stats algorithms	

•  Multimodel: multiple domains and 

communicating between them	


Documentation	

•  README for installation	

•  User’s manual with description, examples 

of custom datatypes, complete API 
reference	




Example Usage	
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// initialize	

int dim = 3; // number of dimensions in the problem	


int tot_blocks = 8; // total number of blocks	

int data_size[3] = {10, 10, 10}; // data size	


MPI_Init(&argc, &argv); // init MPI before DIY	

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, 

data_size, MPI_COMM_WORLD);	


// read data	

 for (int i = 0; i < nblocks; i++) {	


    DIY_Block_starts_sizes(i, min, size);	

    DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	


}	

DIY_Read_blocks_all();	


// decompose domain	

int share_face = 0; // whether adjoining blocks share the same face	


int ghost = 0; // additional layers of ghost cells	

int ghost_dir = 0; // ghost cells apply to all or some sides of a block	


int given[3] = {0, 0, 0}; // constraints on blocking (none)	

DIY_Decompose(share_face, ghost, ghost_dir, given);	




Example API Continued	
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// your own local analysis	


// merge results, in this example	

// could be any combination / repetition of the three communication patterns	


int rounds = 2; // two rounds of merging	

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	


int nb_merged; // number of output merged blocks	

DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, 
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	


// write results	

DIY_Write_open_all(outfile);	

DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	

DIY_Write_close_all();	


// terminate	

DIY_Finalize(); // finalize DIY before MPI	


MPI_Finalize();	




#13: Deliver Performance and Scalability	
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DIY	

•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y., Chaudhuri, A.: 
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and 
Visualization Symposium (LDAV'11), IEEE Visualization Conference, Providence RI, 2011.	

•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special 
Session on Improving MPI User and Developer Interaction IMUDI'12, Vienna, AT.	


DIY applications	

•  Peterka, T., Ross, R., Nouanesengsey, B., Lee, T.-Y., Shen, H.-W., Kendall, W., Huang, J.: A Study of 
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'11, 
Anchorage AK, May 2011. 	

•  Gyulassy, A., Peterka, T., Pascucci, V., Ross, R.: The Parallel Computation of Morse-Smale 
Complexes. Proceedings of IPDPS'12, Shanghai, China, 2012.	

•  Nouanesengsy, B., Lee, T.-Y., Lu, K., Shen, H.-W., Peterka, T.: Parallel Particle Advection and FTLE 
Computation for Time-Varying Flow Fields. Proeedings of SC12, Salt Lake, UT. 	

•  Peterka, T., Kwan, J., Pope, A., Finkel, H., Heitmann, K., Habib, S., Wang, J., Zagaris, G.: Meshing the 
Universe: Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale 
Visualization Workshop, Salt Lake City, UT.	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.: Scalable 
Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large 
Data Analysis and Visualization, LDAV'12, Seattle, WA.	
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Parallel Time-Varying Flow Analysis	


Approach	


-In core / out of core processing of time 
steps	

-Simple load balancing (multiblock 
assignment, early particle termination)	


-Adjustable synchronization 
communication 	


Collaboration with the Ohio State University and University of Tennessee Knoxville 
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Algorithm	

for (epochs) {	

  read my process’ data blocks	

  for (rounds) {	

    for (my blocks) { 	

      advect particles	

    }	

    exchange particles	

  } 	

}	


Pathline tracing of 32 
time-steps of combustion 

in the presence of a cross-
flow	


Parallelization 
within epochs and 
serialization across 
epochs adds 
greater flexibility.	


Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS ‘11 



Particle Tracing	


35	


Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in 
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	
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Parallel Information-Theoretic Analysis	


Objective	

-Decide what data are the most essential for 
analysis 	


-Minimize the information losses and maximize the 
quality of analysis	


-Steer the analysis of data based on information 
saliency	


Information-theoretic approach	

-Quantify Information content based on Shannon’s 
entropy	


-Use this model to design new analysis data 
structures and algorithms	


Collaboration with the Ohio State University and New York University Polytechnic Institute 
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Shannon’s Entropy 	

The average amount of information 
expressed by the random variable is	




Information Entropy	
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Computation of information entropy in 126x126x512 
solar plume dataset shows 59% strong scaling efficiency.	
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Parallel Topological Analysis	


- Transform discrete scalar field into Morse-Smale complex	

-Nodes are minima, maxima, saddle points of scalar values	

- Arcs represent constant-sign gradient flow	

- Used to quickly see topological structure	


Two levels of simplification of 
the Morse-Smale complex for jet 
mixture fraction.	


Collaboration with SCI Institute, University of Utah 

Example of computing discrete gradient and Morse-Smale Complex	


1	
 2	


3	
 4	


Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS ‘12 



Morse-Smale Complex	


39	


Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	
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For 1283 particles, 41 % strong scaling for total tessellation time, including I/O; 
comparable to simulation strong scaling.	


In Situ Voronoi Tessellation	




Recap and Looking Ahead	
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To Do: Research Directions	


•  Advanced decomposition	

•  Block groups	


•  Improved communication algorithms	

•  Less synchronous, more overlap 

with computation	


•  High-level communication operations	

•  Ghost cell exchange, kernel 

convolution (stencil)	

•  Load balancing	


•  Block overloading, dynamic 
reassignment	


•  Programming models	

•  MPI + X on Mira, Titan	


•  Usability	

•  Improved API	


Done: Benefits	

•  Productivity	


•  Express complex algorithms flexibly	

•  Multiple blocks per process	

•  Complete / partial reductions	

•  Neighbor inclusion and 
communication	


•  Simplify existing tasks	

•  Custom data type creation	

•  Compression	


•  Performance	

•  Published scalability	

•  Configurable algorithms	
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